Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Neurol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597943

RESUMO

BACKGROUND: Semantic behavioral variant frontotemporal dementia (sbvFTD) is a neurodegenerative condition presenting with specific behavioral and semantic derangements and predominant atrophy of the right anterior temporal lobe (ATL). The objective was to evaluate clinical, neuropsychological, neuroimaging, and genetic features of an Italian sbvFTD cohort, defined according to recently proposed guidelines, compared to semantic variant primary progressive aphasia (svPPA) and behavioral variant FTD (bvFTD) patients. METHODS: Fifteen sbvFTD, sixty-three bvFTD, and twenty-five svPPA patients and forty controls were enrolled. Patients underwent clinical, cognitive evaluations, and brain MRI. Symptoms of bvFTD patients between onset and first visit were retrospectively recorded and classified as early and late. Grey matter atrophy was investigated using voxel-based morphometry. RESULTS: sbvFTD experienced early criteria-specific symptoms: world, object and person-specific semantic loss (67%), complex compulsions and rigid thought (60%). Sequentially, more behavioral symptoms emerged (apathy/inertia, loss of empathy) along with non-criteria-specific symptoms (anxiety, suspiciousness). sbvFTD showed sparing of attentive/executive functions, especially compared to bvFTD and better language functions compared to svPPA. All sbvFTD patients failed at the famous face recognition test and more than 80% failed in understanding written metaphors and humor. At MRI, sbvFTD had predominant right ATL atrophy, almost specular to svPPA. Three sbvFTD patients presented pathogenic genetic variants. CONCLUSION: We replicated the application of sbvFTD diagnostic guidelines in an independent Italian cohort, demonstrating that the presence of person-specific semantic knowledge loss and mental rigidity, along with preserved executive functions and a predominant right ATL atrophy with sparing of frontal lobes, should prompt a diagnosis of sbvFTD.

2.
Brain Commun ; 6(2): fcae116, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665962

RESUMO

Neurogenesis decline with aging may be associated with brain atrophy. Subventricular zone neuron precursor cells possibly modulate striatal neuronal activity via the release of soluble molecules. Neurogenesis decay in the subventricular zone may result in structural alterations of brain regions connected to the caudate, particularly to its medial component. The aim of this study was to investigate how the functional organization of caudate networks relates to structural brain changes with aging. One hundred and fifty-two normal subjects were recruited: 52 young healthy adults (≤35 years old), 42 middle-aged (36 ≤ 60 years old) and 58 elderly subjects (≥60 years old). In young adults, stepwise functional connectivity was used to characterize regions that connect to the medial and lateral caudate at different levels of link-step distances. A statistical comparison between the connectivity of medial and lateral caudate in young subjects was useful to define medial and lateral caudate connected regions. Atrophy of medial and lateral caudate connected regions was estimated in young, middle-aged and elderly subjects using T1-weighted images. Results showed that middle-aged and elderly adults exhibited decreased stepwise functional connectivity at one-link step from the caudate, particularly in the frontal, parietal, temporal and occipital brain regions, compared to young subjects. Elderly individuals showed increased stepwise functional connectivity in frontal, parietal, temporal and occipital lobes compared to both young and middle-aged adults. Additionally, elderly adults displayed decreased stepwise functional connectivity compared to middle-aged subjects in specific parietal and subcortical areas. Moreover, in young adults, the medial caudate showed higher direct connectivity to the basal ganglia (left thalamus), superior, middle and inferior frontal and inferior parietal gyri (medial caudate connected region) relative to the lateral caudate. Considering the opposite contrast, lateral caudate showed stronger connectivity to the basal ganglia (right pallidum), orbitofrontal, rostral anterior cingulate and insula cortices (lateral caudate connected region) compared to medial caudate. In elderly subjects, the medial caudate connected region showed greater atrophy relative to the lateral caudate connected region. Brain regions linked to the medial caudate appear to be more vulnerable to aging than lateral caudate connected areas. The adjacency to the subventricular zone may, at least partially, explain these findings. Stepwise functional connectivity analysis can be useful to evaluate the role of the subventricular zone in network disruptions in age-related neurodegenerative disorders.

3.
J Neurol ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381175

RESUMO

BACKGROUND AND OBJECTIVES: The AT(N) classification system stratifies patients based on biomarker profiles, including amyloid-beta deposition (A), tau pathology (T), and neurodegeneration (N). This study aims to apply the AT(N) classification to a hospital-based cohort of patients with cognitive decline and/or dementia, within and outside the Alzheimer's disease (AD) continuum, to enhance our understanding of the multidimensional aspects of AD and related disorders. Furthermore, we wish to investigate how many cases from our cohort would be eligible for the available disease modifying treatments, such as aducanemab and lecanemab. METHODS: We conducted a retrospective evaluation of 429 patients referred to the Memory Center of IRCCS San Raffaele Hospital in Milan. Patients underwent clinical/neuropsychological assessments, lumbar puncture, structural brain imaging, and positron emission tomography (FDG-PET). Patients were stratified according to AT(N) classification, group comparisons were performed and the number of eligible cases for anti-ß amyloid monoclonal antibodies was calculated. RESULTS: Sociodemographic and clinical features were similar across groups. The most represented group was A + T + N + accounting for 38% of cases, followed by A + T - N + (21%) and A - T - N + (20%). Although the clinical presentation was similar, the A + T + N + group showed more severe cognitive impairment in memory, language, attention, executive, and visuospatial functions compared to other AT(N) groups. Notably, T + patients demonstrated greater memory complaints compared to T - cases. FDG-PET outperformed MRI and CT in distinguishing A + from A - patients. Although 61% of the observed cases were A + , only 17% of them were eligible for amyloid-targeting treatments. DISCUSSION: The AT(N) classification is applicable in a real-world clinical setting. The classification system provided insights into clinical management and treatment strategies. Low cognitive performance and specific regional FDG-PET hypometabolism at diagnosis are highly suggestive for A + T + or A - T + profiles. This work provides also a realistic picture of the proportion of AD patients eligible for disease modifying treatments emphasizing the need for early detection.

4.
Parkinsonism Relat Disord ; 120: 106015, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325256

RESUMO

INTRODUCTION: Evaluating the neural correlates of sensorimotor control deficits in cervical dystonia (CD) is fundamental to plan the best treatment. This study aims to assess kinematic and resting-state functional connectivity (RS-FC) characteristics in CD patients relative to healthy controls. METHODS: Seventeen CD patients and 14 age-/sex-matched healthy controls were recruited. Electromagnetic sensors were used to evaluate dystonic pattern, mean/maximal cervical movement amplitude and joint position error with eyes open and closed, and movement quality during target reaching with the head. RS-fMRI was acquired to compare the FC of brain sensorimotor regions between patients and controls. In patients, correlations between motion analysis and FC data were assessed. RESULTS: CD patients relative to controls showed reduced mean and maximal cervical range of motion (RoM) in rotation both towards and against dystonia pattern and reduced total RoM in rotation both with eyes open and closed. They had less severe dystonia pattern with eyes open vs eyes closed. CD patients showed an altered movement quality and sensorimotor control during target reaching and a higher joint position error. Compared to controls, CD patients showed reduced FC between supplementary motor area (SMA), occipital and cerebellar areas, which correlated with lower cervical RoM in rotation both with eyes open and closed and with worse movement quality during target reaching. CONCLUSIONS: FC alterations between SMA and occipital and cerebellar areas may represent the neural basis of cervical sensorimotor control deficits in CD patients. Electromagnetic sensors and RS-fMRI might be promising tools to monitor CD and assess the efficacy of rehabilitative interventions.


Assuntos
Distúrbios Distônicos , Torcicolo , Humanos , Torcicolo/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem
5.
J Neurol ; 271(4): 2031-2041, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38189921

RESUMO

OBJECTIVES: To assess whether dual-task gait/balance training with action observation training (AOT) and motor imagery (MI) ameliorates cognitive performance and resting-state (RS) brain functional connectivity (FC) in Parkinson's disease (PD) patients with postural instability and gait disorders (PIGD). METHODS: 21 PD-PIGD patients were randomized into 2 groups: (1) DUAL-TASK + AOT-MI group performed a 6-week training consisting of AOT-MI combined with practicing observed-imagined gait and balance exercises; and (2) DUAL-TASK group performed the same exercises combined with landscape-videos observation. At baseline and after training, all patients underwent a computerized cognitive assessment, while 17 patients had also RS-fMRI scans. Cognitive and RS-FC changes (and their relationships) over time within and between groups were assessed. RESULTS: After training, all PD-PIGD patients improved accuracy in a test assessing executive-attentive (mainly dual-task) skills. DUAL-TASK + AOT-MI patients showed increased RS-FC within the anterior salience network (aSAL), and reduced RS-FC within the anterior default mode network (aDMN), right executive control network and precuneus network. DUAL-TASK patients showed increased RS-FC within the visuospatial network, only. Group × Time interaction showed that, compared to DUAL-TASK group, DUAL-TASK + AOT-MI cases had reduced RS-FC within the aDMN, which correlated with higher accuracy in a dual-task executive-attentive test. CONCLUSIONS: In PD-PIGD patients, both trainings promote cognitive improvement and brain functional reorganization. DUAL-TASK + AOT-MI training induced specific functional reorganization changes of extra-motor brain networks, which were related with improvement in dual-task performance.


Assuntos
Transtornos Neurológicos da Marcha , Doença de Parkinson , Humanos , Cognição , Encéfalo , Função Executiva , Marcha , Imageamento por Ressonância Magnética , Equilíbrio Postural
6.
Ann Clin Transl Neurol ; 11(3): 686-697, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38234062

RESUMO

OBJECTIVE: The resting-state functional connectome has not been extensively investigated in amyotrophic lateral sclerosis (ALS) spectrum disease, in particular in relationship with patients' genetic status. METHODS: Here we studied the network-to-network connectivity of 19 ALS patients carrying the C9orf72 hexanucleotide repeat expansion (C9orf72+), 19 ALS patients not affected by C9orf72 mutation (C9orf72-), and 19 ALS-mimic patients (ALSm) well-matched for demographic and clinical variables. RESULTS: When compared with ALSm, we observed greater connectivity of the default mode and frontoparietal networks with the visual network for C9orf72+ patients (P = 0.001). Moreover, the whole-connectome showed greater node degree (P < 0.001), while sensorimotor cortices resulted isolated in C9orf72+. INTERPRETATION: Our results suggest a crucial involvement of extra-motor functions in ALS spectrum disease. In particular, alterations of the visual cortex may have a pathogenic role in C9orf72-related ALS. The prominent feature of these patients would be increased visual system connectivity with the networks responsible of the functional balance between internal and external attention.


Assuntos
Esclerose Amiotrófica Lateral , Conectoma , Humanos , Imageamento por Ressonância Magnética , Esclerose Amiotrófica Lateral/diagnóstico por imagem , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Proteínas/genética , Mutação
7.
Neurology ; 102(2): e207946, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165325

RESUMO

BACKGROUND AND OBJECTIVES: There is currently no validated disease-stage biomarker for amyotrophic lateral sclerosis (ALS). The identification of quantitative and reproducible markers of disease stratification in ALS is fundamental for study design definition and inclusion of homogenous patient cohorts into clinical trials. Our aim was to assess the rearrangements of structural and functional brain connectivity underlying the clinical stages of ALS, to suggest objective, reproducible measures provided by MRI connectomics mirroring disease staging. METHODS: In this observational study, patients with ALS and healthy controls (HCs) underwent clinical evaluation and brain MRI on a 3T scanner. Patients were classified into 4 groups, according to the King's staging system. Structural and functional brain connectivity matrices were obtained using diffusion tensor and resting-state fMRI data, respectively. Whole-brain network-based statistics (NBS) analysis and comparisons of intraregional and inter-regional connectivity values using analysis of covariance models were performed between groups. Correlations between MRI and clinical/cognitive measures were tested using Pearson coefficient. RESULTS: One hundred four patients with ALS and 61 age-matched and sex-matched HCs were included. NBS and regional connectivity analyses demonstrated a progressive decrease of intranetwork and internetwork structural connectivity of sensorimotor regions at increasing ALS stages in our cohort, compared with HCs. By contrast, functional connectivity showed divergent patterns between King's stages 3 (increase in basal ganglia and temporal circuits [p = 0.04 and p = 0.05, respectively]) and 4 (frontotemporal decrease [p = 0.03]), suggesting a complex interplay between opposite phenomena in late stages of the disease. Intraregional sensorimotor structural connectivity was correlated with ALS Functional Rating Scale-revised (ALSFRS-r) score (r = 0.31, p < 0.001) and upper motor neuron burden (r = -0.25, p = 0.01). Inter-regional frontal-sensorimotor structural connectivity was also correlated with ALSFRS-r (r = 0.24, p = 0.02). No correlations with cognitive measures were found. DISCUSSION: MRI of the brain allows to demonstrate and quantify increasing disruption of structural connectivity involving the sensorimotor networks in ALS, mirroring disease stages. Frontotemporal functional disconnection seems to characterize only advanced disease phases. Our findings support the utility of MRI connectomics to stratify patients and stage brain pathology in ALS in a reproducible way, which may mirror clinical progression.


Assuntos
Esclerose Amiotrófica Lateral , Humanos , Esclerose Amiotrófica Lateral/diagnóstico por imagem , Gânglios da Base , Encéfalo/diagnóstico por imagem , Difusão , Neurônios Motores , Masculino , Feminino
8.
Neurology ; 102(3): e207993, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38165298

RESUMO

BACKGROUND AND OBJECTIVES: The 3 clinical presentations of primary progressive aphasia (PPA) reflect heterogenous neuropathology, which is difficult to be recognized in vivo. Resting-state (RS) EEG is promising for the investigation of brain electrical substrates in neurodegenerative conditions. In this study, we aim to explore EEG cortical sources in the characterization of the 3 variants of PPA. METHODS: This is a cross-sectional, single-center, memory center-based cohort study. Patients with PPA and healthy controls were consecutively recruited at the Neurology Unit, IRCCS San Raffaele Scientific Institute (Milan, Italy). Each participant underwent an RS 19-channel EEG. Using standardized low-resolution brain electromagnetic tomography, EEG current source densities were estimated at voxel level and compared among study groups. Using an RS functional MRI-driven model of source reconstruction, linear lagged connectivity (LLC) values within language and extra-language brain networks were obtained and analyzed among groups. RESULTS: Eighteen patients with logopenic PPA variant (lvPPA; mean age = 72.7 ± 6.6; % female = 52.4), 21 patients with nonfluent/agrammatic PPA variant (nfvPPA; mean age = 71.7 ± 8.1; % female = 66.6), and 9 patients with semantic PPA variant (svPPA; mean age = 65.0 ± 6.9; % female = 44.4) were enrolled in the study, together with 21 matched healthy controls (mean age = 69.2 ± 6.5; % female = 57.1). Patients with lvPPA showed a higher delta density than healthy controls (p < 0.01) and patients with nfvPPA (p < 0.05) and svPPA (p < 0.05). Patients with lvPPA also displayed a greater theta density over the left posterior hemisphere (p < 0.01) and lower alpha2 values (p < 0.05) over the left frontotemporal regions than controls. Patients with nfvPPA showed a diffuse greater theta density than controls (p < 0.05). LLC was altered in all patients relative to controls (p < 0.05); the alteration was greater at slow frequency bands and within language networks than extra-language networks. Patients with lvPPA also showed greater LLC values at theta band than patients with nfvPPA (p < 0.05). DISCUSSION: EEG findings in patients with PPA suggest that lvPPA-related pathology is associated with a characteristic disruption of the cortical electrical activity, which might help in the differential diagnosis from svPPA and nfvPPA. EEG connectivity was disrupted in all PPA variants, with distinct findings in disease-specific PPA groups. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that EEG analysis can distinguish PPA due to probable Alzheimer disease from PPA due to probable FTD from normal aging.


Assuntos
Academias e Institutos , Afasia Primária Progressiva , Humanos , Feminino , Idoso , Pessoa de Meia-Idade , Masculino , Estudos de Coortes , Estudos Transversais , Afasia Primária Progressiva/diagnóstico por imagem , Eletroencefalografia
9.
J Neurol ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019294

RESUMO

BACKGROUND: Most of DYT genotypes follow an autosomal dominant inheritance pattern with reduced penetrance; the mechanisms underlying the disease development remain unclear. The objective of the study was to investigate cortical thickness, grey matter (GM) volumes and white matter (WM) alterations in asymptomatic (DYT-A) and symptomatic dystonia (DYT-S) mutation carriers. METHODS: Eight DYT-A (four DYT-TOR1A and four DYT-THAP1), 14 DYT-S (seven DYT-TOR1A, and seven DYT-THAP1), and 37 matched healthy controls underwent 3D T1-weighted and diffusion tensor (DT) MRI to study cortical thickness, cerebellar and basal ganglia GM volumes and WM microstructural changes. RESULTS: DYT-S showed thinning of the frontal and motor cortical regions related to sensorimotor and cognitive processing, together with putaminal atrophy and subcortical microstructural WM damage of both motor and extra-motor tracts such as cerebral peduncle, corona radiata, internal and external capsule, temporal and orbitofrontal WM, and corpus callosum. DYT-A had cortical thickening of middle frontal areas and WM damage of the corona radiata. CONCLUSIONS: DYT genes phenotypic expression is associated with alterations of both motor and extra-motor WM and GM regions. Asymptomatic genetic status is characterized by a very subtle affection of the WM motor pathway, together with an increased cortical thickness of higher-order frontal regions that might interfere with phenotypic presentation and disease manifestation.

10.
Parkinsonism Relat Disord ; 116: 105858, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37774517

RESUMO

INTRODUCTION: Motor imagery (MI) skills can be affected in Parkinson's disease (PD). We aimed at assessing MI and brain functional changes after action observation and MI training (AOT-MI) associated with gait/balance exercises in PD patients with postural instability and gait disorders (PD-PIGD). METHODS: Twenty-five PD-PIGD patients were randomized into two groups: DUAL-TASK + AOT-MI group performed 6-week gait/balance training combined with AOT-MI; DUAL-TASK group performed the same exercises without AOT-MI. Before and after training, MI was assessed using Kinesthetic-and-Visual-Imagery Questionnaire (KVIQ) and a MI functional MRI (fMRI) task. During fMRI, subjects were asked to watch first-person perspective videos representing gait/balance tasks and mentally simulate their execution. At baseline patients were compared with 23 healthy controls. RESULTS: PD groups did not differ in the MI scores. Both patient groups increased kinesthetic KVIQ score after training, while only DUAL-TASK + AOT-MI group improved visual and total KVIQ scores. At baseline, both PD groups showed reduced fMRI activity of sensorimotor, temporal and cerebellar areas relative to controls. After training, DUAL-TASK + AOT-MI patients increased activity of anterior cingulate, fronto-temporal and motor cerebellar areas, and reduced the recruitment of cognitive cerebellar regions. DUAL-TASK group showed increased recruitment of occipito-temporal areas and reduced activity of cerebellum crus-I. DUAL-TASK + AOT-MI relative to DUAL-TASK group had increased activity of cerebellum VIII-IX. In DUAL-TASK + AOT-MI group, KVIQ improvement correlated with increased activity of cerebellum IX and anterior cingulate, and with reduced activity of crus-I. CONCLUSIONS: AOT-MI improves MI abilities in PD-PIGD patients, promoting the functional plasticity of brain areas involved in MI processes and gait/balance control.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Cerebelo , Imageamento por Ressonância Magnética
11.
Mol Psychiatry ; 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37414925

RESUMO

Multifactorial models integrating brain variables at multiple scales are warranted to investigate aging and its relationship with neurodegeneration. Our aim was to evaluate how aging affects functional connectivity of pivotal regions of the human brain connectome (i.e., hubs), which represent potential vulnerability 'stations' to aging, and whether such effects influence the functional and structural changes of the whole brain. We combined the information of the functional connectome vulnerability, studied through an innovative graph-analysis approach (stepwise functional connectivity), with brain cortical thinning in aging. Using data from 128 cognitively normal participants (aged 20-85 years), we firstly investigated the topological functional network organization in the optimal healthy condition (i.e., young adults) and observed that fronto-temporo-parietal hubs showed a highly direct functional connectivity with themselves and among each other, while occipital hubs showed a direct functional connectivity within occipital regions and sensorimotor areas. Subsequently, we modeled cortical thickness changes over lifespan, revealing that fronto-temporo-parietal hubs were among the brain regions that changed the most, whereas occipital hubs showed a quite spared cortical thickness across ages. Finally, we found that cortical regions highly functionally linked to the fronto-temporo-parietal hubs in healthy adults were characterized by the greatest cortical thinning along the lifespan, demonstrating that the topology and geometry of hub functional connectome govern the region-specific structural alterations of the brain regions.

13.
J Parkinsons Dis ; 13(5): 797-809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37270810

RESUMO

BACKGROUND: The hypothesis that the effectiveness of deep brain stimulation (DBS) in Parkinson's disease (PD) would be related to connectivity dysfunctions between the site of stimulation and other brain regions is growing. OBJECTIVE: To investigate how the subthalamic nucleus (STN), the most frequently used DBS target for PD, is functionally linked to other brain regions in PD patients according to DBS eligibility. METHODS: Clinical data and resting-state functional MRI were acquired from 60 PD patients and 60 age- and sex-matched healthy subjects within an ongoing longitudinal project. PD patients were divided into 19 patients eligible for DBS and 41 non-candidates. Bilateral STN were selected as regions of interest and a seed-based functional MRI connectivity analysis was performed. RESULTS: A decreased functional connectivity between STN and sensorimotor cortex in both PD patient groups compared to controls was found. Whereas an increased functional connectivity between STN and thalamus was found in PD patient groups relative to controls. Candidates for DBS showed a decreased functional connectivity between bilateral STN and bilateral sensorimotor areas relative to non-candidates. In patients eligible for DBS, a weaker STN functional connectivity with left supramarginal and angular gyri was related with a more severe rigidity and bradykinesia whereas a higher connectivity between STN and cerebellum/pons was related to poorer tremor score. CONCLUSION: Our results suggest that functional connectivity of STN varies among PD patients eligible or not for DBS. Future studies would confirm whether DBS modulates and restores functional connectivity between STN and sensorimotor areas in treated patients.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Tálamo , Imageamento por Ressonância Magnética
14.
Neurology ; 100(22): e2290-e2303, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37068954

RESUMO

BACKGROUND AND OBJECTIVES: MRI connectomics is an ideal tool to test a network-based model of pathologic propagation from a disease epicenter in neurodegenerative disorders. In this study, we used a novel graph theory-based MRI paradigm to explore functional connectivity reorganization, discerning between direct and indirect connections from disease epicenters, and its relationship with neurodegeneration across clinical presentations of the frontotemporal dementia (FTD) spectrum, including behavioral variant of FTD (bvFTD), nonfluent variant of primary progressive aphasia (nfvPPA), and semantic variant of primary progressive aphasia (svPPA). METHODS: In this observational cross-sectional study, disease epicenters were defined as the peaks of atrophy of a cohort of patients with high confidence of frontotemporal lobar degeneration pathology (Mayo Clinic). These were used as seed regions for stepwise functional connectivity (SFC) analyses in an independent (Milan) set of patients with FTD to assess connectivity in regions directly and indirectly connected to the epicenters. Correlations between SFC architecture in healthy conditions and atrophy patterns in patients with FTD were also tested. RESULTS: As defined by comparing the 42 Mayo Clinic patients with 15 controls, disease epicenters were the left anterior insula for bvFTD, left supplementary motor area for nfvPPA, and left inferior temporal gyrus (ITG) for svPPA. Compared with 94 age-matched controls, patients with bvFTD (n = 64) and nfvPPA (n = 34) of the Milan cohort showed widespread decreased SFC in bilateral cortical regions with direct/indirect connections with epicenters and increased SFC either in directly connected regions, physically close to the respective seed region, or in more distant cortical/cerebellar areas with indirect connections. Across all link steps, svPPA (n = 36) showed SFC decrease mostly within the temporal lobes, with co-occurrent SFC increase in cerebellar regions at indirect link steps. The average stepwise topological distance from the left ITG in a reference group of 50 young healthy controls correlated with regional gray matter volume in svPPA, consistent with network-based degeneration. DISCUSSION: Our findings demonstrate that each FTD syndrome is associated with a characteristic interplay of decreased and increased functional connectivity with the disease epicenter, affecting both direct and indirect connections. SFC revealed novel insights regarding the topology of functional disconnection across FTD syndromes, holding the promise to be used to model disease progression in future longitudinal studies.


Assuntos
Afasia Primária Progressiva , Demência Frontotemporal , Doença de Pick , Afasia Primária Progressiva não Fluente , Humanos , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/patologia , Imageamento por Ressonância Magnética , Atrofia , Afasia Primária Progressiva/patologia
15.
J Neurol ; 270(7): 3623-3629, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37060360

RESUMO

The hypothesis that the effectiveness of neurosurgical procedures in Parkinson's disease (PD) would be related to connectivity dysfunctions between the site of the stimulation and other brain regions is growing. This study aimed to assess resting-state functional connectivity between thalamic ventral intermediate nucleus (Vim) and the rest of the brain before and after thalamotomy in PD. A 76-year-old right-handed woman with refractory tremor-dominant PD was selected as a candidate for left Vim radiosurgery thalamotomy. Clinical and motion sensor evaluation and brain resting-state functional MRI (rs-fMRI) were carried out before treatment and 3, 6, and 12 months later. Targeted Vim was selected as region of interest and a seed-based rs-fMRI analysis was performed in the patient and ten age- and sex-matched controls at baseline and over time. Furthermore, a correlation analysis between functional connectivity and tremor data was carried out. Both clinical and motion sensor measurements showed a progressive tremor improvement over time on right side after radiosurgery. In the patient, seed-based analysis showed a significantly increased functional connectivity between targeted Vim and ipsilateral visual areas relative to controls before treatment. Over 1 year, a normalization of aberrant pre-therapeutic functional connectivity between Vim and visual areas was obtained. At correlation analysis, the reduction of tremor metrics over time, assessed by clinical evaluation and wearable motion sensors, was related to the reduction of the left Vim-left visual cortex functional connectivity. Our findings support the evidence that fMRI was able to detect targeted Vim connectivity and its changes over time after thalamotomy.


Assuntos
Conectoma , Doença de Parkinson , Núcleos Ventrais do Tálamo , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/radioterapia , Humanos , Feminino , Idoso , Procedimentos Neurocirúrgicos , Núcleos Ventrais do Tálamo/diagnóstico por imagem , Núcleos Ventrais do Tálamo/cirurgia , Radiocirurgia/métodos , Resultado do Tratamento
16.
Neuroradiology ; 65(6): 1025-1035, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36867204

RESUMO

PURPOSE: To evaluate the diagnostic value of combined semiquantitative and quantitative assessment of brain atrophy in the diagnostic workup of the behavioural-variant of frontotemporal dementia (bvFTD). METHODS: Three neuroradiologists defined brain atrophy grading and identified atrophy pattern suggestive of bvFTD on 3D-T1 brain MRI of 112 subjects using a semiquantitative rating scale (Kipps'). A quantitative atrophy assessment was performed using two different automated software (Quantib® ND and Icometrix®). A combined semiquantitative and quantitative assessment of brain atrophy was made to evaluate the improvement in brain atrophy grading to identify probable bvFTD patients. RESULTS: Observers' performances in the diagnosis of bvFTD were very good for Observer 1 (k value = 0.881) and 2 (k value = 0.867), substantial for Observer 3 (k value = 0.741). Semiquantitative atrophy grading of all the observers showed a moderate and a poor correlation with the volume values calculated by Icometrix® and by Quantib® ND, respectively. For the definition of neuroradiological signs presumptive of bvFTD, the use of Icometrix® software improved the diagnostic accuracy for Observer 1 resulting in an AUC of 0.974, and for Observer 3 resulting in a AUC of 0.971 (p-value < 0.001). The use of Quantib® ND software improved the diagnostic accuracy for Observer 1 resulting in an AUC of 0.974, and for Observer 3 resulting in a AUC of 0.977 (p-value < 0.001). No improvement was observed for Observer 2. CONCLUSION: Combining semiquantitative and quantitative brain imaging evaluation allows to reduce discrepancies in the neuroradiological diagnostic workup of bvFTD by different readers.


Assuntos
Encéfalo , Demência Frontotemporal , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/patologia , Neuroimagem , Atrofia/patologia , Testes Neuropsicológicos
17.
Artigo em Inglês | MEDLINE | ID: mdl-36654496

RESUMO

Objectives: In amyotrophic lateral sclerosis (ALS), verbal fluency index (Vfi) is used to investigate fluency accounting for motor impairment. This study has three aims: (1) to provide Vfi reference values from a cohort of Italian healthy subjects; (2) to assess the ability of Vfi reference values (vs standard verbal fluency test [VFT]) in distinguishing ALS patients with and without executive dysfunction; and (3) to investigate the association between Vfi and brain structural features of ALS patients. Methods: We included 180 healthy subjects and 157 ALS patients who underwent neuropsychological assessment, including VFT and Vfi, and brain MRI. Healthy subjects were split into four subgroups according to sex and education. For each subgroup, we defined the 95th percentile of Vfi as the cutoff. In ALS, the distributions of "abnormal" cases based on Vfi and standard VFT cutoffs were compared using Fisher's exact test. Using quantile regressions in patients, we assessed the association between Vfi and VFT scores, separately, with gray matter volumes and white matter (WM) tract integrity. Results: Applying Vfi and VFT cutoffs, 9 and 13% of ALS cases, respectively, had abnormal scores (p < 0.001). In ALS, while higher Vfi scores were associated with WM changes of callosal fibers linking supplementary motor area, lower VFT performances related to corticospinal tract alterations. Discussion: We provided Italian reference values for the spoken Vfi. Compared to VFT, Vfis are critical to disentangle motor and cognitive deficits in ALS. In patients, abnormal Vfis were associated with damage to WM tracts specifically involved in ideational information processing.


Assuntos
Esclerose Amiotrófica Lateral , Transtornos Cognitivos , Disfunção Cognitiva , Humanos , Esclerose Amiotrófica Lateral/complicações , Esclerose Amiotrófica Lateral/diagnóstico por imagem , Valores de Referência , Encéfalo/diagnóstico por imagem , Transtornos Cognitivos/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Testes Neuropsicológicos
18.
Expert Rev Neurother ; 23(1): 59-73, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36710600

RESUMO

INTRODUCTION: Neurodegenerative diseases can be considered as 'disconnection syndromes,' in which a communication breakdown prompts cognitive or motor dysfunction. Mathematical models applied to functional resting-state MRI allow for the organization of the brain into nodes and edges, which interact to form the functional brain connectome. AREAS COVERED: The authors discuss the recent applications of functional connectomics to neurodegenerative diseases, from preclinical diagnosis, to follow up along with the progressive changes in network organization, to the prediction of the progressive spread of neurodegeneration, to stratification of patients into prognostic groups, and to record responses to treatment. The authors searched PubMed using the terms 'neurodegenerative diseases' AND 'fMRI' AND 'functional connectome' OR 'functional connectivity' AND 'connectomics' OR 'graph metrics' OR 'graph analysis.' The time range covered the past 20 years. EXPERT OPINION: Considering the great pathological and phenotypical heterogeneity of neurodegenerative diseases, identifying a common framework to diagnose, monitor and elaborate prognostic models is challenging. Graph analysis can describe the complexity of brain architectural rearrangements supporting the network-based hypothesis as unifying pathogenetic mechanism. Although a multidisciplinary team is needed to overcome the limit of methodologic complexity in clinical application, advanced methodologies are valuable tools to better characterize functional disconnection in neurodegeneration.


Assuntos
Conectoma , Doenças Neurodegenerativas , Humanos , Conectoma/métodos , Doenças Neurodegenerativas/patologia , Encéfalo , Imageamento por Ressonância Magnética/métodos , Progressão da Doença , Rede Nervosa
19.
J Neurol ; 270(3): 1735-1744, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36534200

RESUMO

BACKGROUND: Few studies interrogated the involvement of cerebellum in modulating gait in Parkinson's disease (PD) patients with postural instability and gait disorders (PD-PIGD). This study aimed at assessing cerebellar atrophy and activity alterations during functional MRI (fMRI) gait-simulating motor- and dual-tasks in PD-PIGD. METHODS: Twenty-one PD-PIGD and 23 healthy controls underwent clinical assessment, structural MRI, and fMRI including a motor-task (foot anti-phase movements) and a dual-task (foot anti-phase movements while counting backwards by threes). Grey matter cerebellar volumes were assessed using SUIT atlas. FMRI activations were extracted from each cerebellar lobule, and we correlated cerebellar and basal ganglia activity. RESULTS: PD-PIGD patients had reduced volumes of cerebellar motor and non-motor areas relative to controls. During fMRI motor-task, patients showed greater activation of cognitive cerebellar areas (VI and Crus I-II) vs controls. During fMRI dual-task, PD-PIGD patients showed increased activity of cognitive areas (Crus II) and reduced activity of motor areas (I-IV). Cerebellar structural alterations correlated with increased fMRI activity of cerebellar cognitive areas and with lower executive-attentive performance. The increased activity of Crus I during the motor-task correlated with a better motor performance in PD-PIGD. Moreover, the increased activity of cerebellum correlated with a reduced activity of putamen. CONCLUSIONS: In PD-PIGD, the increased activity of non-motor cerebellar areas during gait-simulating tasks may be a consequence of grey matter atrophy or an attempt to compensate the functional failure of cerebellar motor areas and basal ganglia. Cerebellar MRI metrics are useful to characterize brain correlates of motor and dual-task abilities in PD-PIGD patients.


Assuntos
Transtornos Neurológicos da Marcha , Córtex Motor , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Tremor , Cerebelo/diagnóstico por imagem , Marcha , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/etiologia , Equilíbrio Postural/fisiologia
20.
NPJ Parkinsons Dis ; 8(1): 158, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379944

RESUMO

This study investigated longitudinal clinical, structural and functional brain alterations in Parkinson's disease patients with freezing of gait (PD-FoG) and in those developing (PD-FoG-converters) and not developing FoG (PD-non-converters) over two years. Moreover, this study explored if any clinical and/or MRI metric predicts FoG development. Thirty PD-FoG, 11 PD-FoG-converters and 11 PD-non-converters were followed for two years. Thirty healthy controls were included at baseline. Participants underwent clinical and MRI visits. Cortical thickness, basal ganglia volumes and functional network graph metrics were evaluated at baseline and over time. In PD groups, correlations between baseline MRI and clinical worsening were tested. A ROC curve analysis investigated if baseline clinical and MRI measures, selected using a stepwise model procedure, could differentiate PD-FoG-converters from PD-non-converters. At baseline, PD-FoG patients had widespread cortical/subcortical atrophy, while PD-FoG-converters and non-converters showed atrophy in sensorimotor areas and basal ganglia relative to controls. Over time, PD-non-converters accumulated cortical thinning of left temporal pole and pallidum without significant clinical changes. PD-FoG-converters showed worsening of disease severity, executive functions, and mood together with an accumulation of occipital atrophy, similarly to PD-FoG. At baseline, PD-FoG-converters relative to controls and PD-FoG showed higher global and parietal clustering coefficient and global local efficiency. Over time, PD-FoG-converters showed reduced parietal clustering coefficient and sensorimotor local efficiency, PD-non-converters showed increased sensorimotor path length, while PD-FoG patients showed stable graph metrics. Stepwise prediction model including dyskinesia, postural instability and gait disorders scores and parietal clustering coefficient was the best predictor of FoG conversion. Combining clinical and MRI data, ROC curves provided the highest classification power to predict the conversion (AUC = 0.95, 95%CI: 0.86-1). Structural MRI is a useful tool to monitor PD progression, while functional MRI together with clinical features may be helpful to identify FoG conversion early.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...